
1

G52CPP
C++ Programming

Lecture 1

Dr Jason Atkin
E-Mail: jaa@cs.nott.ac.uk

2

This Lecture

• Pre-requisites
• Module Aims and Information
• Suggested Course Texts
• Module Structure and Assessment
• History of C and C++
• Why Learn C and C++
• C++ vs Java?
• ‘C++ Hello World’ (vs ‘C Hello World’)

Pre-requisites

• G51PRG : Procedural C Programming
– You should already know a fair amount about

C programming
– You should understand a considerable

number of C functions

• G51OOP : Object Oriented Java
– You should have an understanding of what a

class is, what members are, how classes work
together

3

4

Module Aims

5

Aims: I want you to …
• Be able to understand and write C/C++ source code

– Good for employment prospects
– Ultimately, this is a PROGRAMMING module

• Know what you can do in C++
– Be able to look up ‘how’ in a job if necessary

• Understand what your code actually does
– Know something of how C++ implements features

• Know the similarities and differences between C, C++
and Java

– Understand why Java changed things

• Practise programming (will help with Java and C too)

• I will not be teaching:
– Object oriented methodology
– Object oriented C++
– How to create C++ programs to satisfy purists

6

We will start with procedural C++

Builds on G51PRG

Understand what is
happening
inside/underneath C++
Rather than hiding it

If you understand what it is
doing, you can diagnose
and fix your program when
it goes wrong

Otherwise you need to ask
for help

7

The Iceberg of C++
• We will only look at the top – the common things
• Many other features we will not cover

• We will also ignore object oriented theory (‘how’ not ‘why’)

8

Module Information

9

Information

• Lecture slides, sample code and lab notes
will be on the module web page:
– http://www.cs.nott.ac.uk/~jaa/cpp/g52cpp.html

• Or google me
(Jason Atkin)

• And scroll
down to the
buttons on
my homepage

Main Web Page

Lecture Slides and Information

Lecture Slides and Information

WARNING: If lecture
attendance is low I will start
to remove parts of the
slides on the web – so that
you have to fill them in

Lab Notes and Demo Lectures

13

Lab Notes and Demo Lectures

14

Labs are the best place to
ask questions

Labs are designed to help
you with the coursework
and the exam

15

Course Text

16

Recommended Course Text
• The Complete Reference: C++, Fourth Edition

by Herbert Schildt
– Similar structure to this module (C then C++)
– A reference, not a tutorial!

(Images courtesy
of amazon, but
available from
many places.)

17

Other Texts (1)

• Many other C++ books in the library
– But most books now introduce classes from the

start (so you think in an OO way)

– E.g. ‘C++ How to Program’, Deitel and Deitel

– Many books in the Jubilee library

• Other online references
– E.g. http://www.cplusplus.com/doc/tutorial/

18

Other Texts (2)

• ‘The C++ Programming Language’,
by Bjarne Stroustrup

– The definitive book on the language
– but not a tutorial (a technical reference)

• ‘Effective C++’ and ‘More Effective C++’,
by Scott Meyers

– Explain many confusing elements
– Ideal for understanding ‘why’ as well as ‘how’
– NOT an introduction to C++

19

Module Structure

20

Organisation

• 2 ‘new material’ lectures per week
– Introducing C and C++ concepts
– 3 in week 1 – things you should already know

• 1 demo lecture – in a lecture room/slot
– Practical demonstrations
– Usually writing/examining code, no slides
– Introduces the coursework

• 1 two-hour lab session
– Get help and feedback on progress

21

What you need to (or should) do

• Attend the lectures
• Read books & online web sites about C/C++
• Attend the lab sessions

– I suggest doing the exercises

• Try the samples from lectures
• Try your own sample programs

– From books or online

• Change existing code
– Observe the effects

22

Feedback

• How do you know how well you are doing?

23

Feedback

• How do you know how well you are doing?

• Brilliant automated feedback device:
the compiler

– Check compilation warnings as well as errors!

• Utilise lab session helpers please
– All 3 this year have done this module before!
– 2 hour session each week

24

Assessment

25

Course Assessment
• Course assessment is by

coursework (40%)
and exam (60%)

• Formal Coursework : 40%
– C++ programming
– A simple graphical program using the SDL

multimedia library and the supplied framework
• Deliberately not a framework which you will

already know!
• A lot of flexibility for you to choose how to meet the

requirements

26

Exam Questions

• I will assume the following are valid for
exam questions:
– Things covered in the lectures

• Even if not on the lecture slides!

– Things in the samples or lab notes
• Especially the first two lab notes

– The basic C/C++ language constructs
• You were introduced to many of these in G51PRG
• Operators, loops, conditionals, etc

– The common C library functions (part of C++)
• e.g. input/output functions, string functions

Coursework
• Write a program using the supplied

framework (which does a lot of the work)
• You need to provide a number of features
• Hall of fame for previous years can be

found here:
http://www.cs.nott.ac.uk/~jaa/cpp/CPPHallOf
Fame/halloffame.html
Download and try some of the games
• Look at the variety of things produced
• Think about what you would like to do 27

28

C and C++

29

The history of C/C++
In Bell Labs, ‘B’ language created, based on BCPL
1971-1973 : Dennis Ritchie extended ‘B’ to create ‘C’

Main features of C developed over this time
1973-1980 : New features were added

C needed to be standardised!
1979 : Bjarne Stroustrup (Bell labs) extended C to make ‘C with classes’
1982 : ‘K&R’ (Kernighan and Ritchie) unofficial C ‘standard’
1983 : ‘C with classes’ renamed C++, features still being added
1989 : ANSI standard C (started in 1983!) (=> ISO standard in 1990)

Differs in some ways from K&R ‘C’ and is often named ‘C89’
Together with Amendment 1, forms ‘C’ element of ‘C++’

1990s : C++ took centre stage (Standardisation progressing)
1994 : Standard Template Library makes it into the ISO standard C++

(Some template implementation arguments ongoing as late as 2003)
1995 : Java released by Sun
1998 : ISO standard C++ ratified (C++98)
1999 : New version of C standard (C99) (Differs from C++)

We will consider C++, G51PRG covered parts of C89

30

Five reasons to learn C & C++?

1. (Still) utilised in industry – C even more so
– Why so popular? (after so long)

2. Choose the appropriate tool for the task
– Understand the Java/C# vs C/C++ differences

3. More programming practice
– Much is common across languages

4. Much is VERY similar to Java and C#
– Easier to learn: much will be familiar to you

5. Useful for other modules
– And for 3rd year projects

31

www.langpop.com, normalised, 2011

http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html (Jan 2013)

32

33

The aims of C and C++

• Even in 2011, C was more popular than C++ and Java
– Especially for operating systems and device drivers
– Where layout in memory matters – control needed

• C came first : with specific design aims
– Ability to write low-level code (e.g. O/S)
– Speed and efficiency
– Ease for programmers, rather than non-programmers

• Cross-platform compilation
– Compared with Assembly code
– Not as much as Java

• Why is C still so popular (over C++ and Java)?
– Control and visibility – don’t have the side-effects/simplifications
– Anything you can do in C++ can be done in C
– But may need more code

34

Why C++ rather than C?

• Since everything in C++ could be done in C, why
learn C++?

• C++ gives you higher level concepts
– Hides complexity
– Java hides even more and gives no choice but ‘do it my way’
– C++ keeps the ability to do things as you wish

• Higher level view is sometimes very useful, when large
amounts of code can be reused
– C++ Class libraries are ideal for a GUI on Windows, OS/X, Linux

(then decide appearance/speed vs portability)

• C++ also adds to C a lot of non-OO features
– e.g. templates, new/delete, operator overloading, references, …
– Useful for procedural programming as well as O.O.

35

Object Oriented or Procedural?

• C is procedural (no classes, hard to do OO)
• C++ will let you do either

– You CAN write procedural C++ (OO ‘purists’ will frown at you)
– Or you can write object oriented C++
– Or mix both together (often a bad idea)

• Procedural or O.O. are ways of thinking
– A lot of communicating objects or ‘do this then this then this…’

• Whichever you use: (within a thread)
– Functions are called and operations are executed one at a time

• Object oriented techniques can hide some complexity (a good thing?)
– Make it easier to understand a program (?)
– Make it easier to structure a large program (?)
– Some facilities hide what is actually happening, to simplify things (bad?)

• We will consider C++ as a language for programming, not at object
oriented design/programming

C++ knowledge is respected
• It has been said:

“If you can do C++, you can do Java and C#”

• What does this mean?
– C++ is NOT easy!
– You need to understand a lot to ‘do’ C++

• Do not expect an easy module!
• Expect to have to think!

– A good memory will not get you through 36

37

C++ vs Java?

38

What is C++?
Procedural C
Global Functions
File-specific functions
Structs
Pointers (addresses)
Low-level memory access
C Preprocessor

Classes
- Grouping of related data together
- With associated methods (functions)
‘new’ for object creation
‘delete’ for object destruction
Constructors, Destructors
Operator Overloading
Assignment operators
Conversion operators
Inheritance (sub-classing)
Virtual functions & polymorphism
Access control (private/public/protected)

Templates
(Generic classes)

Class Libraries
(+templated classes)
Standard library + BOOST
Custom libraries
Platform specific libraries

Function Libraries
Standard functions
Custom libraries
O/S functions Non-C features

e.g. References

Variables
Arrays
Loops
Conditionals

39

What about Java?
Classes
- Grouping of related data together
- With associated methods (functions)
‘new’ for object creation
‘delete’ for object destruction
Constructors, Destructors
Operator Overloading
Assignment operators
Conversion operators (toString()?)
Inheritance (sub-classing)
(ONLY) Virtual functions & polymorphism
Access control (private/public/protected)

Templates
‘Generics’ (weaker)

Class Libraries
(Standardised)
Collections
Networking
Graphics

Function Libraries
Standard functions
Custom libraries
O/S functions
Java Native Interface

Non-C features
(ONLY) references

Procedural C
Global Functions
File-specific functions
Structs
Pointers (addresses)
Low-level memory access
C Preprocessor

Variables
Arrays
Loops
Conditionals

Platform specific class-libraries
• E.g. Visual studio provides easy support for

windows:
– MDI Child/container windows
– SDI (Single Document Interface)
– Dialog based
– Ribbon bar
– Tool bar
– Splitters
– ActiveX containers
– ActiveX servers

• App-wizard will include these for free
• Cost: platform dependent

40

41

What Sun changed for Java
• Remember: C++ came first

– The Java changes were deliberate!
• Java is cross-platform

– Interpreted intermediate byte-code (.class files)
– Standard cross-platform class libraries
– Libraries include graphics (AWT, SWING, …), networking, …
– Platform independent type sizes
– Cannot take advantage of platform-specific features

• Java prevents things which are potentially dangerous
– Pointer arithmetic (but it can be fast)
– Writing outside arrays (checks take time)
– Low-level access to memory (dangerous per powerful)
– Uninitialised data (initialisation takes time)

• Java forces you to use objects
– Even when it would be quicker not to

• Java does garbage collection for you
– Safer(?), but may execute slower than freeing memory yourself

42

My view of C/C++ vs Java
• C++:

– Power and control: What to do? How to do it?
• Java:

– “Do it my way and I’ll do more of the work for you”
– But it may be less efficient than doing it yourself
– Some things cannot be done in Java alone (JNI)

• Java hides many things from you
– And decides how you will do things

• Java prevents you doing some things and
checks others
– C++ trusts that you know what you are doing
– If you do not, then you can REALLY break things

• Do you want/need the power/control of C++?

43

Which is better? Java or C++?

• What does ‘better’ mean?
• What are you trying to do?
• Do you need the power and control that

C++ gives you?
• With fewer options, things may seem simpler

– Potentially harder to make mistakes
– But you lose the flexibility to optimise

• If you know both, then you have more
options (and the basics are very similar)

44

“Hello World”

A simple C++ (and C) program

Since you have had 2 semesters to
forget what you did in G51PRG

45

The “Hello World” Program
#include <stdio.h> /* C file */

int main(int argc, char* argv[])
{
printf("Hello world!\n");
return 0;

}

#include <cstdio> /* C++ file */

int main(int argc, char* argv[])
{
printf("Hello world!\n");
return 0;

}

C version

C++ version

46

Next lecture

• C++ data types
– Sizes of types
– C and C++ types
– Two new C++-only types

• Type casting
• Operators
• Pointers (introduction)

