G52CPP
C++ Programming
Lecture 1

Dr Jason Atkin
E-Mall: jaa@cs.nott.ac.uk

This Lecture

* Pre-requisites

 Module Aims and Information

e Suggested Course Texts

 Module Structure and Assessment

e History of C and C++

« Why Learn C and C++

e C++ vs Java?

e ‘C++ Hello World’ (vs ‘C Hello World’)

2

Pre-requisites

e G51PRG : Procedural C Programming

— You should already know a fair amount about
C programming

— You should understand a considerable
number of C functions

e G5100P : Object Oriented Java

— You should have an understanding of what a
class is, what members are, how classes work
together

Aims: | want you to ...

Be able to understand and write C/C++ source code

— Good for employment prospects
— Ultimately, this is a PROGRAMMING module

Know what you can do in C++

— Be able to look up ‘how’ in a job if necessary
Understand what your code actually does

— Know something of how C++ implements features

Know the similarities and differences between C, C++
and Java

— Understand why Java changed things
Practise programming (will help with Java and C too)

| will not be teaching:

— Object oriented methodology

— Object oriented C++

— How to create C++ programs to satisfy purists

We will start with procedural C++

Builds on G51PRG

Understand what is
happening
Inside/underneath C++

Rather than hiding it

If you understand what it is
doing, you can diagnose
and fix your program when
It goes wrong

Otherwise you need to ask
for help

The Iceberg of C++

 \We will only look at the top — the common things
 Many other features we will not cover

. WeW|II also |gnre objctonented theory ' not ‘why’)

Module Information

Information

e Lecture slides, sample code and lab notes
will be on the module web page:

— http://lwww.cs.nott.ac.uk/~jaa/cpp/gs52cpp.htmi

e Or google me
(Jason Atkin)

 And scroll
down to the
buttons on
my homepage

()

) Jason Atkin, School of Computer Science, University of Nottingham - Mozilla Firefox
File Edit View History Bookmarks Tools Help
r Jason Atkin, School of Computer Science, U... | =+ | =

(— P www.cs.nott,ac.uki~jaaf 1= C "." .lr ft

¥ ASAP Research Group... | | Outlook Web Access -... [™] Gmail - Inbox (1) - jaa... "' Google Calendar 8. Amazon.co.uk: low pri... »

>

Logistics and transportation problems ~
Vehicle Routing Problems

Airport Autormnation, Integration and Optimisation

Airside Airport Operations, particularly runway sequencing,

Jason A. D. Atkin pushback time allocation, ground movement, stand allocation
Autornated Scheduling, optimisAtion And Planning (ASAP and other resource allocation problems

School of Comgut_er Science Links

University of Nottingham

Jubilee Carnpus, Wollaton Road LANCS Initiative: Foundational Operational Research: Building
Nottingham, NG8 1BB, UK Theory for Practice

National Air Traffic Services Ltd.
Tel: +44 115 846 6531

12a@cs.nott.ac.uk The Smith Institute for Industrial Matheratics and Systems
Engineering

Transport and Logistics stream of YOR17, Young OR conference

Hits
since 09:00, 22nd October, 2003

7 \\
[Top H Teaching][G510BS ([G52CPP J[)Research H Papers]
N 4

Research v

Main Web Page

¥ G52CPP Module Page - for 2012/2013 - Mozilla Firefox
File Edit View History Bookmarks Tools Help

lijﬁéc;schPModule Page - for 2012/2013 X | ¥' Key dates 2012/13 - The University of N... ** | + |

€ 9 | .cs.nott.ac.uk/~jaa/cpp/a52cpp.ht - C'| "‘" Google Pl A
> RER
|2 Most Visited | | Getting Started 5/ LatestHeadines Q) Finandial Reports | | Calendar andRoomB... | | Saturn - Student Adm... | | UoN Module Catalogue | | G52GRP 2012-2013: ... »

G52CPP Summary Lectures| Labs| Coursework Revision| Questions

GS52CPP C++ Programming - for
201272013

Lectures

The module has been structured to have two compulsory lectures per week, but there

are three lecture slots. Apart from in the first week, I will use one slot each week for
demonstrations and practice, and for an introduction to the informal and formal
courseworks, rather than giving new C++ information.

In the past, students have said that these extra demo lectures were one of the things 5

| ecture Slides and Information

¥)) G52CPP Lectures - Mozilla Firefox H=]E3
File Edit View History Bookmarks Tools Help

|¥GSZCPP Lectures x I r Keydates mwB'MWWOfN... P l -+]
6 i .cs.nott.ac.uk/~jaa/cpp/lectures.htn - C‘H-"" Google p‘ O
N’ o
\2) Most Visited | ! Getting Started 3 Latest Headiines @) Finandial Reports { | Calendar and RoomB... | | Satum - Student Adm... | | UoN Module Catalogue | | GS2GRP 2012-2013: .. »

Lecture slides:

Note: Any code from demo lectures will appear on the Labs pages, since it fits better there, with the lab
notes associated with it.

Lecture and Date Link to slides Subject
Lecture 1, Thurs 31st Jan PHzléglm Introduction and Overview
Lecture 2, Fri 1st Feb To appear Data types and casting, operators, Pointers
Lecture 3, Fri 1st Feb To appear Pointers, arrays and strings
#** No lab on Friday 1st February, A32 *** B
Lecture 4, Thur 7th Feb |To appear Pointer arithmetic, functions and globals
Lecture 5, Fri 8th Feb To appear The stack, variable shadowing and variable lifetime
#** Labs start Fri 8th February, A32 ***
Lecture 6, Thur 14th Feb |To appear Structs, unions and sizes
Lecture 7, Fri 15th Feb |To appear Dynamic memory allocation and linked lists
#** Lab 2 is Friday 135th February, A32 ***
Lecture 8, Thur 21st Feb |To appear Const, multiple files and the pre-processor
Lecture 9. Fri 22nd Feb | To appear Classes =

| ecture Slides and Information

¥)) G52CPP Lectures - Mozilla Firefox
File Edit View History Bookmarks Tools Help

. G52CPP Lectures x] r Key dates 2012/13 - The University of N... +
(' {] s.nott.ac.uk es.ht - |[29- ol
!;—;t:st\ilsited [} Getting Started 3 Latest Headlines @) Financial Reports | | Calendar and RoomB... | | Saturn - Student Adm... | | UoN Module Catalogue | | G52GRP 2012-2013: ... »
Lecture slides: -
Note: Any i i i iith the lab
notes assq §
WARNING: If lecture -
Lectu
el gttendance Is low | will start
Lecture 2
a3 1O Femove parts of the —]
**% No 14
=i Slides on the web —so that |
Lecture 5
#%x%] ab - -
—=ryou have to fill them In —
Lecture 7, Fri 15th Feb [To appear IDynamic memory allocation and linked lists
#** Lab 2 is Friday 135th February, A32 ***
Lecture 8, Thur 21st Feb \To appear |C0nst, multiple files and the pre-processor
Lecture 9. Fri 22nd Feb |To appear Classes =

Lab Notes and Demo Lectures

¥)) G52CPP Labs - Mozilla Firefox - [O] X]
File Edit View History Bookmarks Tools Help

|} G52cPP Labs x | ¥ Key dates 2012/13 - The University of N... * | + | -
(‘ < ‘ cs.nott.ac.uk/~jaa/cpp/labs.htm - ‘ |-." ,,,,,, P‘ o
S’

|2} Most Visited | | Getting Started 3. Latest Headines @) Finandial Reports | | Calendar and RoomB... | | Saturn - Student Adm... | | UoN Module Catalogue | | G52GRP 2012-2013: ... »

L.ab Notes and Demo Lecture details

You should use the labs to practice and get feedback from the lab assistants or me. This is an important means of

obtaining feedback on your progress and you should not ignore it.

The lab exercises have been designed to teach you important concepts which you will need in the exam, as well

as to prepare you for the formal coursework.

Introduction: Getting started

Please use the first lab session to work through these documents.

Labs exercise:
Requirements

Examples

Lab 1 Exercises for Lab 1 There is a short program for you to write at the end of the lab
- notes document.
Some associated slides.
%nput/Output examples Most of this lab session revolves around writing your own
2 program for a Hangman game. This is ENTIRELY optional. In
f?ode sample : 10_demo.cpp previous years, students said that this kind of exercise was
Lab 2 Grias ssentatind dlides extremely useful in understanding pointers, strings, arrays, and

memory allocation, as well as input and output. I recommend
doing at least part of it and think that your investment in time will
be worthwhile, but it's entirely up to you.

Please take advantage of the labs to get feedback on this.

Lab Notes and Demo Lectures

¥)) G52CPP Labs - Mozilla Firefox

File Edit View History Bookmarks Tools Help

{1 G520PP Labs x | ¥ Key dates 2012/13 - The University of N... | +
(- . nott.ac.uk - | |g- . Pl
8_ ;4051' Visited | | Getting Started = Latest Headlines Q) Finandial Reports [| Calendar andRoomB... | | Saturn - Student Adm... | | UoN Module Catalogue | | GS2GRP 2012-2013: . »
N
Lab N
__Labs are the best place to
ou shou nt means of
obtaining .
_“lask questions
¢ lab e n, as well
as to prep
Labs are designed to help
Lab 1 _ pf the lab
you with the coursework
VIl
and the exam
Lab 2 q _—— extremely useful in understanding pointers, strings, arra;:,s and -
a ome assoclated slides memory allocation, as well as input and output. I recommend
i,abs exercise: doing at least part of it and think that your investment in time will
g (' be worthwhile, but it's entirely up to you.
E{z‘?::ln)f[eézents Please take advantage of the labs to get feedback on this.
=i -l

Recommended Course Text

 The Complete Reference: C++, Fourth Edition

by Herbert Schildt
Similar structure to this module (C then C++)

A reference, not a tutorial!

Click to LOOK "!S!Dg
Complete W
'Reference

C++ (I mages courtesy

ey of anamzon, but
- & avail able from
many pl aces.)

Herbert Schildt n

16

Other Texts (1)

« Many other C++ books in the library

— But most books now introduce classes from the
start (so you think in an OO way)

— E.g. ‘C++ How to Program’, Deitel and Deltel
— Many books in the Jubilee library

e Other online references
— E.g. http:/lwww.cplusplus.com/doc/tutorial/

17

Other Texts (2)

‘The C++ Programming Language’,
by Bjarne Stroustrup

— The definitive book on the language
— but not a tutorial (a technical reference)

‘Effective C++ and ‘More Effective C++’,
by Scott Meyers

— Explain many confusing elements

— ldeal for understanding ‘why’ as well as ‘how’

— NOT an introduction to C++

18

Module Structure

Organisation

2 ‘new material’ lectures per week
— Introducing C and C++ concepts
— 3 1n week 1 — things you should already know

e 1 demo lecture —in a lecture room/slot
— Practical demonstrations
— Usually writing/examining code, no slides
— Introduces the coursework

e 1 two-hour lab session
— Get help and feedback on progress

20

What you need to (or should) do

e Attend the lectures
e Read books & online web sites about C/C++

o Attend the lab sessions
— | suggest doing the exercises
e Try the samples from lectures
e Try your own sample programs
— From books or online “ ’

e Change existing code
— Observe the effects =

~—7

21

Feedback

« How do you know how well you are doing?

22

Feedback

« How do you know how well you are doing?

 Brilliant automated feedback device:
the compiler

— Check compilation warnings as well as errors!

o Utilise lab session helpers please
— All 3 this year have done this module before!
— 2 hour session each week

23

Course Assessment

e Course assessment Is by

coursework (40%) il
and exam (60%) cﬁ‘ 1)
L
e Formal Coursework : 40% N S

— C++ programming
— A simple graphical program using the SDL
multimedia library and the supplied framework

 Deliberately not a framework which you will
already know!

A lot of flexibility for you to choose how to meet the
requirements
25

Exam Questions

| will assume the following are valid for
exam questions:

— Things covered In the lectures
e Even If not on the lecture slides!

— Things In the samples or lab notes
» Especially the first two lab notes

— The basic C/C++ language constructs
e You were introduced to many of these in G51PRG
e Operators, loops, conditionals, etc

— The common C library functions (part of C++)

 e.g. input/output functions, string functions
26

Coursework

* \Write a program using the supplied
framework (which does a lot of the work)

* You need to provide a number of features

« Hall of fame for previous years can be
found here:

nttp://www.cs.nott.ac.uk/~jaa/cpp/CPPHallOf
—ame/halloffame.html

Download and try some of the games
* Look at the variety of things produced
e Think about what you would liketodo

The history of C/C++

In Bell Labs, ‘B’ language created, based on BCPL

1971-1973 : Dennis Ritchie extended ‘B’ to create ‘C’
Main features of C developed over this time

1973-1980 : New features were added
C needed to be standardised!

1979 : Bjarne Stroustrup (Bell labs) extended C to make ‘C with classes’

1982 : ‘K&R’ (Kernighan and Ritchie) unofficial C ‘standard’

1983 : ‘C with classes’ renamed C++, features still being added

1989 : ANSI standard C (started in 1983!) (=> ISO standard in 1990)
Differs in some ways from K&R ‘C’ and is often named ‘C89’
Together with Amendment 1, forms ‘C’ element of ‘C++’

1990s : C++ took centre stage (Standardisation progressing)

1994 : Standard Template Library makes it into the ISO standard C++
(Some template implementation arguments ongoing as late as 2003)

1995 : Java released by Sun

1998 : ISO standard C++ ratified (C++98)

1999 : New version of C standard (C99) (Differs from C++)

29
We will consider C++, G51PRG covered parts of C89

Five reasons to learn C & C++?

- (Still) utilised In industry — C even more so
— Why so popular? (after so long)

% Choose the appropriate tool for the task
— Understand the Java/C# vs C/C++ differences

% More programming practice

— Much iIs common across languages

Much is VERY similar to Java and C#
— Easier to learn: much will be familiar to you

% Useful for other modules

— And for 3 year projects 30

www.langpop.com, normalised, 2011

C

Java

C++
PHP

JavaScript
Python

C#
Perl

SQL

Ruby

Shell
Visual Basic
Assembly
Actionscript
Objective C
Lisp

Delphi
Pascal
Scheme
Haskell

Tel

Ada

Lua

Fortran
ColdFusion
Cobol
Erlang

D

Scala

Smalltalk
OCaml

Forth |

Rexx

EaEI I EIEIEI R

0.20

0.40

0.60

0.80

1.00

http://www.tiobe.com/index.php/content/

paperinfo/tpci/index.html

(Jan 2013)

Position | Position L _ Ratings | Delta
Jan 2013 | Jan 2012 Delta in Position | Programming Language Jan 2013 | Jan 2012 Status
1 2] € 17.855% | +0.89% | A
2 1 | Java 17417% | -0.05% | A
3 5 11 Objective-C 10.283% | +337% | A
4 4 Gt 9.140% | +1.09% | A
5 3 u c# 6.196% | -257% | A
6 6 PHP 5546% | -0.16% | A
7 7 (Visual) Basic 4.749% | +0.23% A
8 8 Python 4173% | +0.96% | A
9 9 Perl 2264% | -050% | A
10 10 JavaScript 1976% | -034% | A
11 12 1 Ruby 1775% | +0.34% | A
12 24 | TETERRENRT | visual Basic NET 1.043% | +056% | A

The aims of C and C++

Even in 2011, C was more popular than C++ and Java
— Especially for operating systems and device drivers

— Where layout in memory matters — control needed

C came first : with specific design aims

— Ability to write low-level code (e.g. O/S)

— Speed and efficiency

— Ease for programmers, rather than non-programmers

Cross-platform compilation
— Compared with Assembly code
— Not as much as Java

Why is C still so popular (over C++ and Java)?

— Control and visibility — don’t have the side-effects/simplifications

— Anything you can do in C++ can be done in C
— But may need more code

33

Why C++ rather than C?

Since everything in C++ could be done in C, why
learn C++7?

C++ gives you higher level concepts

— Hides complexity

— Java hides even more and gives no choice but ‘do it my way’
— C++ keeps the ability to do things as you wish

Higher level view is sometimes very useful, when large
amounts of code can be reused

— C++ Class libraries are ideal for a GUI on Windows, OS/X, Linux
(then decide appearance/speed vs portability)

C++ also adds to C a lot of non-OO features
— e.g. templates, new/delete, operator overloading, references, ...
— Useful for procedural programming as well as O.O.

34

ODbject Oriented or Procedural?

e C is procedural (no classes, hard to do OO)
o C++ will let you do either
— You CAN write procedural C++ (OO ‘purists’ will frown at you)
— Or you can write object oriented C++
— Or mix both together (often a bad idea)
 Procedural or O.0O. are ways of thinking
— A lot of communicating objects or ‘do this then this then this...’
 Whichever you use: (within a thread)
— Functions are called and operations are executed one at a time
* Object oriented techniques can hide some complexity (a good thing?)
— Make it easier to understand a program (?)
— Make it easier to structure a large program (?)
— Some facilities hide what is actually happening, to simplify things (bad?)

 We will consider C++ as a language for programming, not at object

oriented design/programming 35

C++ knowledge Is respected

It has been said:
“If you can do C++, you can do Java and C#”

What does this mean?
— C++1s NOT easy!
— You need to understand a lot to ‘do’ C++

Do not expect an easy module!

Expect to have to think!
— A good memory will not get you through 36

What is C++?

Procedural C

Global Functions
File-specific functions
Structs

Pointers (addresses)
Low-level memory access
C Preprocessor

Variables
Arrays
Loops
Conditionals

Classes

- Grouping of related data together

- With associated methods (functions)
‘new’ for object creation

‘delete’ for object destruction
Constructors, Destructors

Operator Overloading

Assignment operators

Conversion operators

Inheritance (sub-classing)

Virtual functions & polymorphism
Access control (private/public/protected)

Function Libraries | | Templates
(Generic classes)

Standard functions

Class Libraries
(+templated classes)

Custom libraries
O/S functions

Non-C features
e.g. References

Standard library + BOOST
Custom libraries
Platform specific libraries

\>,>J

8

What about Java?

Procedural C Classes
e - Grouping of related data together
e - With associated methods (functions)
- ‘new’ for object creation
e Constructors -Bestructors-
e ————
_ —— e
Variables Conversion-eperators (toString()?)
Arrays Inheritance (sub-classing)
Loops (ONLY) Virtual functions & polymorphism
Conditionals Access control (private/public/protected)
—_— - Class Libraries
Standard-functions ‘Generics’ (weaker) | | (Standardised)
Custom-ibraries Collections
O/S-functions- Non-C features Networking

Java Native Interface | | (ONLY) references | | Graphics

39

Platform specific class-libraries

e E.g. Visual studio provides easy support for
windows:
— MDI Child/container windows
— SDI (Single Document Interface)
— Dialog based
— Ribbon bar
— Tool bar
— Splitters
— ActiveX containers
— ActiveX servers

* App-wizard will include these for free
e Cost: platform dependent

40

What Sun changed for Java

Remember: C++ came first
— The Java changes were deliberate!

Java Is cross-platform
— Interpreted intermediate byte-code (.class files)
— Standard cross-platform class libraries
— Libraries include graphics (AWT, SWING, ...), networking, ...
— Platform independent type sizes
— Cannot take advantage of platform-specific features

Java prevents things which are potentially dangerous
— Pointer arithmetic (but it can be fast)
— Writing outside arrays (checks take time)
— Low-level access to memory (dangerous per powerful)
— Uninitialised data (initialisation takes time)

Java forces you to use objects
— Even when it would be quicker not to

Java does garbage collection for you
— Safer(?), but may execute slower than freeing memory yourself4!

My view of C/C++ vs Java

C++:

— Power and control: What to do? How to do it?
Java:

— “Do it my way and I'll do more of the work for you”
— But it may be less efficient than doing it yourself
— Some things cannot be done in Java alone (JNI)
Java hides many things from you

— And decides how you will do things

Java prevents you doing some things and
checks others

— C++ trusts that you know what you are doing
— If you do not, then you can REALLY break things

Do you want/need the power/control of C++7?

42

Which Is better? Java or C++?

e \WWhat does ‘better’ mean?
e What are you trying to do?

Do you need the power and control that
C++ gives you?
« With fewer options, things may seem simpler

— Potentially harder to make mistakes
— But you lose the flexibility to optimise

* If you know both, then you have more
options (and the basics are very similar)

43

“Hello World”

A simple C++ (and C) program

Since you have had 2 semesters to
forget what you did in G51PRG

The “Hello World” Program

#include <stdio.h>/* Cfile */

Int main(int argc, char* argv|[])

{
printf("Hello worldl'\n");

return O;

}

C ver si on

#1 ncl ude <cstdio> /* C++ file */

Int main(int argc, char* argv|[])

{
printf("Hello world!'\n");

return O;

}

C++ versi on

45

Next lecture

 C++ data types
— Sizes of types
—C and C++ types
—Two new C++-only types

* Type casting
e Operators
* Pointers (introduction)

