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G52CPP 
C++ Programming

Lecture 1

Dr Jason Atkin
E-Mail: jaa@cs.nott.ac.uk
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This Lecture 

• Pre-requisites
• Module Aims and Information
• Suggested Course Texts
• Module Structure and Assessment
• History of C and C++
• Why Learn C and C++
• C++ vs Java?
• ‘C++ Hello World’ (vs ‘C Hello World’) 



Pre-requisites

• G51PRG : Procedural C Programming
– You should already know a fair amount about 

C programming
– You should understand a considerable 

number of C functions

• G51OOP : Object Oriented Java
– You should have an understanding of what a 

class is, what members are, how classes work 
together
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Module Aims
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Aims: I want you to …
• Be able to understand and write C/C++ source code

– Good for employment prospects
– Ultimately, this is a PROGRAMMING module

• Know what you can do in C++
– Be able to look up ‘how’ in a job if necessary

• Understand what your code actually does
– Know something of how C++ implements features 

• Know the similarities and differences between C, C++ 
and Java

– Understand why Java changed things

• Practise programming (will help with Java and C too)

• I will not be teaching:
– Object oriented methodology
– Object oriented C++
– How to create C++ programs to satisfy purists
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We will start with procedural C++

Builds on G51PRG

Understand what is 
happening 
inside/underneath C++
Rather than hiding it

If you understand what it is 
doing, you can diagnose 
and fix your program when 
it goes wrong

Otherwise you need to ask 
for help
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The Iceberg of C++
• We will only look at the top – the common things
• Many other features we will not cover

• We will also ignore object oriented theory (‘how’ not ‘why’)
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Module Information
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Information

• Lecture slides, sample code and lab notes 
will be on the module web page:
– http://www.cs.nott.ac.uk/~jaa/cpp/g52cpp.html

• Or google me
(Jason Atkin)

• And scroll
down to the
buttons on
my homepage



Main Web Page



Lecture Slides and Information



Lecture Slides and Information

WARNING: If lecture 
attendance is low I will start 
to remove parts of the 
slides on the web – so that 
you have to fill them in



Lab Notes and Demo Lectures
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Lab Notes and Demo Lectures
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Labs are the best place to 
ask questions

Labs are designed to help 
you with the coursework 
and the exam
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Course Text
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Recommended Course Text
• The Complete Reference: C++, Fourth Edition

by Herbert Schildt
– Similar structure to this module (C then C++)
– A reference, not a tutorial!

(Images courtesy
of amazon, but
available from
many places.)
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Other Texts (1)

• Many other C++ books in the library
– But most books now introduce classes from the 

start (so you think in an OO way)

– E.g. ‘C++ How to Program’, Deitel and Deitel

– Many books in the Jubilee library

• Other online references
– E.g. http://www.cplusplus.com/doc/tutorial/
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Other Texts (2)

• ‘The C++ Programming Language’, 
by Bjarne Stroustrup

– The definitive book on the language
– but not a tutorial (a technical reference)

• ‘Effective C++’ and ‘More Effective C++’, 
by Scott Meyers

– Explain many confusing elements
– Ideal for understanding ‘why’ as well as ‘how’
– NOT an introduction to C++
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Module Structure
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Organisation

• 2 ‘new material’ lectures per week
– Introducing C and C++ concepts
– 3 in week 1 – things you should already know

• 1 demo lecture  – in a lecture room/slot
– Practical demonstrations
– Usually writing/examining code, no slides
– Introduces the coursework

• 1 two-hour lab session
– Get help and feedback on progress
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What you need to (or should) do

• Attend the lectures
• Read books & online web sites about C/C++
• Attend the lab sessions

– I suggest doing the exercises

• Try the samples from lectures
• Try your own sample programs

– From books or online

• Change existing code
– Observe the effects
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Feedback

• How do you know how well you are doing?
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Feedback

• How do you know how well you are doing?

• Brilliant automated feedback device:
the compiler

– Check compilation warnings as well as errors!

• Utilise lab session helpers please
– All 3 this year have done this module before!
– 2 hour session each week



24

Assessment



25

Course Assessment
• Course assessment is by 

coursework (40%) 
and exam (60%)

• Formal Coursework : 40%
– C++ programming
– A simple graphical program using the SDL

multimedia library and the supplied framework
• Deliberately not a framework which you will 

already know! 
• A lot of flexibility for you to choose how to meet the 

requirements
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Exam Questions

• I will assume the following are valid for 
exam questions:
– Things covered in the lectures

• Even if not on the lecture slides!

– Things in the samples or lab notes
• Especially the first two lab notes

– The basic C/C++ language constructs
• You were introduced to many of these in G51PRG
• Operators, loops, conditionals, etc

– The common C library functions (part of C++)
• e.g. input/output functions, string functions



Coursework
• Write a program using the supplied 

framework (which does a lot of the work)
• You need to provide a number of features
• Hall of fame for previous years can be 

found here:
http://www.cs.nott.ac.uk/~jaa/cpp/CPPHallOf
Fame/halloffame.html
Download and try some of the games
• Look at the variety of things produced
• Think about what you would like to do 27
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C and C++
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The history of C/C++
In Bell Labs, ‘B’ language created, based on BCPL
1971-1973 : Dennis Ritchie extended ‘B’ to create ‘C’

Main features of C developed over this time
1973-1980 : New features were added

C needed to be standardised!
1979 : Bjarne Stroustrup (Bell labs) extended C to make ‘C with classes’
1982 : ‘K&R’ (Kernighan and Ritchie) unofficial C ‘standard’
1983 : ‘C with classes’ renamed C++, features still being added
1989 : ANSI standard C (started in 1983!) (=> ISO standard in 1990)

Differs in some ways from K&R ‘C’ and is often named ‘C89’
Together with Amendment 1, forms ‘C’ element of  ‘C++’

1990s : C++ took centre stage (Standardisation progressing)
1994 : Standard Template Library makes it into the ISO standard C++

(Some template implementation arguments ongoing as late as 2003)
1995 : Java released by Sun
1998 : ISO standard C++ ratified (C++98)
1999 : New version of C standard (C99) (Differs from C++)

We will consider C++, G51PRG covered parts of C89 
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Five reasons to learn C & C++?

1. (Still) utilised in industry – C even more so
– Why so popular? (after so long)

2. Choose the appropriate tool for the task
– Understand the Java/C# vs C/C++ differences

3. More programming practice
– Much is common across languages

4. Much is VERY similar to Java and C#
– Easier to learn: much will be familiar to you

5. Useful for other modules
– And for 3rd year projects
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www.langpop.com, normalised, 2011



http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html    (Jan 2013)

32



33

The aims of C and C++

• Even in 2011, C was more popular than C++ and Java
– Especially for operating systems and device drivers
– Where layout in memory matters – control needed

• C came first : with specific design aims
– Ability to write low-level code (e.g. O/S)
– Speed and efficiency
– Ease for programmers, rather than non-programmers

• Cross-platform compilation
– Compared with Assembly code
– Not as much as Java

• Why is C still so popular (over C++ and Java)?
– Control and visibility – don’t have the side-effects/simplifications
– Anything you can do in C++ can be done in C
– But may need more code 
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Why C++ rather than C?

• Since everything in C++ could be done in C, why 
learn C++?

• C++ gives you higher level concepts
– Hides complexity
– Java hides even more and gives no choice but ‘do it my way’
– C++ keeps the ability to do things as you wish

• Higher level view is sometimes very useful, when large 
amounts of code can be reused
– C++ Class libraries are ideal for a GUI on Windows, OS/X, Linux 

(then decide appearance/speed vs portability)

• C++ also adds to C a lot of non-OO features
– e.g. templates, new/delete, operator overloading, references, …
– Useful for procedural programming as well as O.O.
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Object Oriented or Procedural?

• C is procedural (no classes, hard to do OO)
• C++ will let you do either

– You CAN write procedural C++ (OO ‘purists’ will frown at you)
– Or you can write object oriented C++
– Or mix both together (often a bad idea)

• Procedural or O.O. are ways of thinking
– A lot of communicating objects or ‘do this then this then this…’

• Whichever you use: (within a thread)
– Functions are called and operations are executed one at a time

• Object oriented techniques can hide some complexity (a good thing?)
– Make it easier to understand a program (?)
– Make it easier to structure a large program (?)
– Some facilities hide what is actually happening, to simplify things (bad?)

• We will consider C++ as a language for programming, not at object 
oriented design/programming



C++ knowledge is respected
• It has been said:

“If you can do C++, you can do Java and C#”

• What does this mean?
– C++ is NOT easy!
– You need to understand a lot to ‘do’ C++

• Do not expect an easy module!
• Expect to have to think!

– A good memory will not get you through 36
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C++ vs Java?
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What is C++?
Procedural C
Global Functions
File-specific functions
Structs
Pointers (addresses)
Low-level memory access
C Preprocessor

Classes
- Grouping of related data together
- With associated methods (functions)
‘new’ for object creation
‘delete’ for object destruction
Constructors, Destructors
Operator Overloading 
Assignment operators
Conversion operators
Inheritance (sub-classing)
Virtual functions & polymorphism
Access control (private/public/protected)

Templates
(Generic classes)

Class Libraries
(+templated classes)
Standard library + BOOST
Custom libraries
Platform specific libraries

Function Libraries
Standard functions
Custom libraries
O/S functions Non-C features

e.g. References

Variables
Arrays 
Loops
Conditionals
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What about Java?
Classes
- Grouping of related data together
- With associated methods (functions)
‘new’ for object creation
‘delete’ for object destruction
Constructors, Destructors
Operator Overloading
Assignment operators
Conversion operators (toString()?)
Inheritance (sub-classing)
(ONLY) Virtual functions & polymorphism
Access control (private/public/protected)

Templates
‘Generics’ (weaker)

Class Libraries 
(Standardised)
Collections
Networking
Graphics

Function Libraries
Standard functions
Custom libraries
O/S functions
Java Native Interface

Non-C features
(ONLY) references

Procedural C
Global Functions
File-specific functions
Structs
Pointers (addresses)
Low-level memory access
C Preprocessor

Variables
Arrays 
Loops
Conditionals



Platform specific class-libraries
• E.g. Visual studio provides easy support for 

windows:
– MDI Child/container windows
– SDI (Single Document Interface)
– Dialog based
– Ribbon bar
– Tool bar
– Splitters
– ActiveX containers
– ActiveX servers

• App-wizard will include these for free
• Cost: platform dependent
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What Sun changed for Java
• Remember: C++ came first

– The Java changes were deliberate!
• Java is cross-platform

– Interpreted intermediate byte-code (.class files)
– Standard cross-platform class libraries
– Libraries include graphics (AWT, SWING, …), networking, …
– Platform independent type sizes
– Cannot take advantage of platform-specific features

• Java prevents things which are potentially dangerous
– Pointer arithmetic (but it can be fast)
– Writing outside arrays (checks take time)
– Low-level access to memory (dangerous per powerful)
– Uninitialised data (initialisation takes time)

• Java forces you to use objects
– Even when it would be quicker not to

• Java does garbage collection for you
– Safer(?), but may execute slower than freeing memory yourself
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My view of C/C++ vs Java
• C++:

– Power and control: What to do? How to do it?
• Java: 

– “Do it my way and I’ll do more of the work for you”
– But it may be less efficient than doing it yourself
– Some things cannot be done in Java alone (JNI)

• Java hides many things from you
– And decides how you will do things

• Java prevents you doing some things and 
checks others
– C++ trusts that you know what you are doing
– If you do not, then you can REALLY break things

• Do you want/need the power/control of C++?
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Which is better? Java or C++?

• What does ‘better’ mean?
• What are you trying to do?
• Do you need the power and control that 

C++ gives you?
• With fewer options, things may seem simpler

– Potentially harder to make mistakes
– But you lose the flexibility to optimise

• If you know both, then you have more 
options (and the basics are very similar)
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“Hello World”

A simple C++ (and C) program

Since you have had 2 semesters to 
forget what you did in G51PRG
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The “Hello World” Program
#include <stdio.h> /* C file */

int main(int argc, char* argv[])
{
printf("Hello world!\n");
return 0;

}

#include <cstdio> /* C++ file */

int main(int argc, char* argv[])
{
printf("Hello world!\n");
return 0;

}

C version

C++ version
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Next lecture

• C++ data types
– Sizes of types
– C and C++ types
– Two new C++-only types

• Type casting
• Operators
• Pointers (introduction)


